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Statistical Traffic Anomaly Detection in
Time-Varying Communication Networks ∗

Jing Wang † and Ioannis Ch. Paschalidis,‡ Fellow, IEEE,

Abstract—We propose two methods for traffic anomaly
detection in communication networks where properties
of normal traffic evolve dynamically. We formulate the
anomaly detection problem as a binary composite hypothesis
testing problem and develop a model-free and a model-based
method, leveraging techniques from the theory of large
deviations. Both methods first extract a family of Prob-
ability Laws (PLs) that represent normal traffic patterns
during different time-periods, and then detect anomalies
by assessing deviations of traffic from these laws. We
establish the asymptotic Newman-Pearson optimality of
both methods and develop an optimization-based approach
for selecting the family of PLs from past traffic data. We
validate our methods on networks with two representative
time-varying traffic patterns and one common anomaly
related to data exfiltration. Simulation results show that
our methods perform better than their vanilla counterparts,
which assume that normal traffic is stationary.

Index Terms—Statistical anomaly detection, large devi-
ations theory, set covering, binary composite hypothesis
testing, cyber-security.

I. INTRODUCTION

A network traffic anomaly is, broadly speaking, an
unusual traffic pattern that can not be explained by the
typical variability observed in communication network
traffic. Traffic anomalies may arise either due to oper-
ational malfunctions (e.g., router failures) or due to the
presence of malicious traffic that threatens the security of
the network. Automated online traffic anomaly detection
has received a lot of attention, primarily motivated by
security considerations.

Network traffic anomaly detection is a special case of
more broadly defined system anomaly detection and rele-
vant approaches can be roughly grouped into two classes:
signature-based anomaly detection, where known pat-
terns of past anomalies are used to identify ongoing
anomalies [1, 2], and change-based anomaly detection
which identifies patterns that substantially deviate from

* Research partially supported by the NSF under grants CNS-
1239021 and IIS-1237022, by the ARO under grants W911NF-11-1-
0227 and W911NF-12-1-0390, and by the ONR under grant N00014-
10-1-0952.
† Division of Systems Engineering, Boston University, 8 St. Mary’s

St., Boston, MA 02215, wangjing@bu.edu.
‡ Department of Electrical and Computer Engineering and Division

of Systems Engineering, Boston University, 8 St. Mary’s St., Boston,
MA 02215, yannisp@bu.edu, http://ionia.bu.edu/.

normal patterns of operations [3–6]. Signature-based
methods generate few false-alarms, yet, detection rates
can be quite low, e.g., below 70% [7]. Furthermore,
such methods cannot detect zero-day attacks, i.e., attacks
not previously seen, and need constant (and expensive)
updating to keep up with new attack signatures. In
contrast, change-based anomaly detection methods are
considered to be more economic and promising since
they can identify novel attacks. In this work we focus on
change-based anomaly detection methods, in particular
methods that leverage statistical techniques.

Statistical anomaly detection consists of two steps.
The first step is to characterize “normal behavior” by
analyzing past system behavior. The second step is to
identify time instances where system behavior does not
appear to be normal by monitoring the system contin-
uously. For anomaly detection in communication net-
works, [5] presents two methods to characterize normal
behavior and to assess deviations from it based on the
theory of Large Deviations (LD) [8]. Both methods con-
sider the traffic, which is viewed as a sequence of flows,
as a sample path of an underlying stochastic process
and “compare” empirical measures of current network
traffic to some reference network traffic model. The first
method – called model-free – assumes that traffic consists
of an independent and identically distributed (i.i.d.)
sequence of flows, while the second method – called
model-based – models traffic as a Markov Modulated
Process. Both methods make a stationarity assumption,
postulating that the statistical properties of traffic do not
change over time.

However, traffic in modern communication networks
is hardly stationary [9]. Internet traffic is subject to
weekly and diurnal variations [10, 11]. Internet traffic is
also influenced by macroscopic factors such as important
holidays and events [12], leading to spikes in the rate
of flows that eventually subside after some period of
time. Similar phenomena arise in local area networks as
well. This motivates the work in this paper that aims at
developing methods which can accommodate transient
and periodic traffic behavior.

To that end, we present two methods that are robust
to time-varying traffic behavior: a robust model-free
and a robust model-based method that can be seen as
generalizations of the corresponding methods from [5].
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Robustness, here, should be interpreted in the same vein
as in [13], that is, anomaly detection decisions are made
from a composite hypothesis test which allows for ambi-
guity in the probabilistic model that characterizes normal
behavior. In particular, a Probability Law (PL) used in
[5] to characterize normal behavior is now replaced by
a family of PLs where each member of this family
captures different “modes” of the traffic at different time
intervals (e.g., day, night, during a spike in traffic, etc.).
We develop new robust hypothesis tests in this setting
and establish their asymptotic optimality in a Neyman-
Pearson sense. Second, we propose a two-stage method
to estimate a family of PLs. Our two-stage method
transforms a hard problem (i.e., estimating PLs for multi-
dimensional data) into two well-studied problems: (i)
estimating one-dimensional data parameters, and (ii)
formulating the problem of selecting a representative set
of PLs to form a PL family as a set covering problem.
As we will see, this two-stage method is suitable for
distributed computation.

The remainder of the paper is structured as follows.
Sec. II formulates system anomaly detection as a bi-
nary composite hypothesis testing problem and develops
our two robust methods. Sec. III discusses how we
parametrize network traffic and presents our approach
for estimating PL families. Sec. IV validates our overall
approach in several realistic settings and compares the
performance of our robust methods to their non-robust
counterparts. Sec. V contains some concluding remarks.

Notation: Throughout the paper all vectors are as-
sumed to be column vectors. We use lower case boldface
letters to denote vectors and for economy of space we
write x = (x1, . . . , xn) for the column vector x. We
use upper case boldface letters to denote matrices. We
use script letters to define sets, and denote by |A| the
cardinality of set A.

II. BINARY COMPOSITE HYPOTHESIS TESTING

In this section, we present a hypothesis testing frame-
work for making anomaly detection decisions. As we
mentioned earlier, the crux of our methodology is to
model network traffic as a stochastic process. Historical
traffic time-series can be used to estimate a set of
parameters for this stochastic process, giving rise to
what we called a PL. Then, the problem of detecting
an anomaly in real-time is equivalent to testing whether
current observed traffic is indeed a “likely” sample path
of the stochastic process we learned from past history.

The general problem we will consider is testing
whether a sequence of observations G = {g1, . . . , gn}
is a sample path of a stochastic process G (hypothesis
H0). The stochastic process G is assumed to be discrete-
time, thus, a sample path of length n can be denoted
by G = {G1, . . . , Gn}. All random variables Gi are

discrete and their sample space is a finite alphabet Σ =
{σ1, σ2, . . . , σ|Σ|}, where |Σ| denotes the cardinality of
Σ. Realizations of G1, . . . , Gn will be denoted by gi

and also take values in Σ. We assume that the joint
probability distribution pθ(G1, . . . , Gn) is parameterized
by some parameter θ ∈ Ω, where Ω is the set where θ
takes values. The parameter θ is considered unknown and
{pθ(G1, . . . , Gn) : ∀ θ ∈ Ω} can be viewed as a family
of PLs characterizing H0. As we will see later, θ will
range over the various modes of the traffic at different
time intervals and Ω will be a discrete set.

We will treat the problem of deciding whether a
realization G of G is anomalous as the binary com-
posite hypothesis testing problem between H0 and the
complement of H0 denoted by H̄0. We call such a test
composite because θ is considered unknown. A decision
rule S is a set such that G ∈ S , {G|H0 is rejected}, in-
dicating an anomaly, and G /∈ S , {G | H0 is accepted},
indicating no anomaly. For a decision rule S , we define
αS (θ) = Pθ|H0 [G ∈ S] to be the false alarm rate, and
βS (θ) = Pθ|H̄0

[G /∈ S] to be the miss detection rate,
where Pθ|H0 [·] is the probability evaluated assuming H0

is true and Pθ|H̄0
[·] is the probability evaluated assuming

the alternative hypothesis is true.
We use the term exponent to refer to the quantity
− limn→∞

1
n logP [·] for some probability P [·], if the

limit exists. If the exponent is d, then the probability ap-
proaches zero as e−nd. We next present the Generalized
Neyman-Pearson Criterion for decision rules.

Definition 1
(Generalized Neyman-Pearson (GNP) Criterion). A de-
cision rule S is optimal if it satisfies

lim
n→∞

sup
1
n

logαS(θ) ≤ −λ, (1)

and maximizes − limn→∞ sup log βS(θ)
n uniformly for all

θ ∈ Ω.

Because the joint distribution pθ(G1, . . . , Gn) becomes
complex when n is large, we focus on two types of
simplification. One is to assume all random variables Gi

are i.i.d., the other is to assume the stochastic process G
is a Markov chain.

A. A model-free method

We first propose a method we call model-free, where
the random variables Gi are i.i.d.. Each Gi takes the
value σj with probability pFθ (Gi = σj), j = 1, . . . , |Σ|,
which is parameterized by θ ∈ Ω. We refer to the
vector pFθ = (pFθ (Gi = σ1), . . . , pFθ (Gi = σ|Σ|)) as
the model-free Probability Law (PL) corresponding to θ.
Then the family of model-free PLs PF =

{
pFθ : θ ∈ Ω

}
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characterizes the stochastic process G . To characterize
the observation G, let

EGF (σj) =
1
n

n∑
i=1

1(gi = σj), j = 1, . . . , |Σ|, (2)

where 1(·) is an indicator function. Then, an estimate for
the underlying model-free PL based on the observation
G is EGF =

{
EGF (σj) : j = 1, . . . , |Σ|

}
, which is called

the model-free empirical measure of G.
Suppose µ = (µ(σ1), . . . , µ(σ|Σ|)) is a model-free PL

and ν = (ν(σ1), . . . , ν(σ|Σ|)) is a model-free empirical
measure. To quantify the difference between µ and ν,
we define the model-free divergence between them as

DF (ν‖µ) ,
|Σ|∑
j=1

ν(σj) log
ν(σj)
µ(σj)

. (3)

The anomaly detection test is given in the following def-
inition. Notice that the minimization over θ is selecting
the PL with the minimal exponent, or equivalently the
largest probability, hence, the most likely PL.

Definition 2
(Model-Free Generalized Hoeffding Test). The model-
free generalized Hoeffding test [14] is to reject H0 when
G is in the set:

S∗F = {G | inf
θ∈Ω

DF (EGF ‖pFθ ) ≥ λ},

where λ is a detection threshold.

We call infθ∈Ω DF (EGF ‖pFθ ) the generalized model-free
divergence between EGF and PF . A similar definition
has been proposed for robust localization in sensor
networks [15]. We introduce the following theorem.

Theorem II.1 The model-free generalized Hoeffding
test satisfies the GNP criterion.

Proof: See Appendix A.
We remark that when applying this detection rule in

practice we substitute µ and ν in (3) with µ̂ and ν̂ where
ν̂(σj) = max(ν(σj), ε) and µ̂(σj) = max(µ(σj), ε),∀j
and ε is a small positive constant introduced to avoid
underflow and division by zero.

B. A model-based method

We now turn to the model-based method where
the random process G = {G1, . . . , Gn} is assumed
to be a Markov chain. Under this assumption, and
for G = {g1, . . . , gn}, the joint distribution of G
becomes pθ (G = G) = pBθ

(
g1
)∏n−1

i=1 p
B
θ

(
gi+1 | gi

)
,

where pBθ (·) is the initial distribution and pBθ (· | ·) is
the transition probability; all parametrized by θ ∈ Ω.

Let pBθ (σi, σj) be the probability of seeing two con-
secutive states (σi, σj). We refer to the matrix PB

θ =
{pBθ (σi, σj)}|Σ|i,j=1 as the model-based PL associated
with θ ∈ Ω. Then, we can interpret PB =

{
PB
θ : θ ∈ Ω

}
as a family of model-based PLs. To characterize the
observation G, let for all i, j = 1, . . . , |Σ|

EGB(σi, σj) =
1
n

n∑
l=2

1(gl−1 = σi, g
l = σj). (4)

We define the model-based empirical measure of G as the
matrix EGB = {EGB(σi, σj)}|Σ|i,j=1. The transition probabil-

ity from σi to σj is simply EGB(σj |σi) = EGB(σi,σj)P|Σ|
j=1 E

G
B(σi,σj)

.

Suppose Π = {π(σi, σj)}|Σ|i,j=1 is a model-based PL
and Q = {q(σi, σj)}|Σ|i,j=1 is a model-based empirical
measure. Let π̂(σj |σi) and q̂(σj |σi) be the corresponding
transition probabilities from σi to σj . Then, the model-
based divergence between Π and Q is

DB(Q ‖ Π) =
|Σ|∑
i=1

|Σ|∑
j=1

q(σi, σj) log
q(σj |σi)
π(σj |σi)

. (5)

Similar to the model-free case we define:

Definition 3
(Model-Based Generalized Hoeffding Test). The model-
based generalized Hoeffding test is to reject H0 when G
is in the set:

S∗B = {G | inf
θ∈Ω

DB(EGB‖PB
θ ) ≥ λ},

where λ is a detection threshold.

As in the model-free case, we will be calling
infθ∈Ω DB(EGB‖PB

θ ) the generalized model-based di-
vergence between EGB and PB . GNP optimality can be
established in this case, too (cf. Def. 1).

Theorem II.2 The model-based generalized Hoeffding
test satisfies the GNP criterion.

Proof: See Appendix B.
As in the model-free case, when applying this de-

tection rule in practice we substitute q̂(σi, σj) =
max(q(σi, σj), ε) and π̂(σi, σj) = max(π(σi, σj), ε) in
the place of q(σi, σj) and π(σi, σj) in (5), respectively,
where ε is some small positive constant introduced to
avoid underflow and division by zero.

III. NETWORK ANOMALY DETECTION

In this section we present our anomaly detection
methods whose structure is outlined in Fig. 1. First
we use reference flows to estimate a family of PLs
that characterize the normal operation of the network.
This involves selecting a large candidate set of PLs
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Window 1 PL 1 PL N

Window 2

Window 3
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...

PL Refinement

Reference Flows

 PL Candidates Rough Estimation

Fig. 1. Structure of the algorithms.

and then refining it through optimization. Then, we
test windows of traffic against this family using the
generalized Hoeffding tests in Definition 2 or Definition
3.

A. Data representation

1) Network traffic representation and flow aggrega-
tion: Till now, we deliberately formulated problems in a
general way. In fact, the only requirement of our methods
on data is that each data record should be comprised of
a time stamp and some additional features. As a result,
our methods can be used in different applications by
choosing appropriate features.

In this paper, however, we focus on host-based
anomaly detection, a specific application in which we
monitor the incoming and outgoing packets of a server.
We assume that the server provides only one service
(e.g., web server) and other ports are either closed or
outside our interests. As a result, we only monitor traffic
on a certain port (e.g., port 80 for web service). For
servers with multiple ports in need of monitoring, we
can run our method on each port.

The features we propose for this particular application
relate to a flow representation slightly different from
that of commercial vendors like the Cisco NetFlow
[16]. Hereafter, we will use the terms “flows”, “traffic”,
and “data” interchangeably. Let {s1, . . . , sm} denote the
collection of all packets collected on the monitored port
of the host. Since the server IP is always fixed, it will
be ignored and we will only track the user IP address,
denoted by xi for packet si. The size of si is bi ∈ [0,∞)
in bytes and the start time of transmission is ti ∈ [0,∞)
in seconds. Using this convention, packet si can be
represented as (xi, bi, tis) for all i = 1, . . . ,m.

We compile a sequence of packets s1 =
(x1, b1, t1s), . . . , s

m = (xm, bm, tms ) with t1s < · · · < tms
into a flow f = (x, b, dt, t) if x = x1 = · · · = xm and
tis − ti−1

s < δF for i = 2, . . . ,m and some prescribed
δF ∈ (0,∞). Here, the flow size b is the sum of the
sizes of the packets that comprise the flow. The flow
duration is dt = tms − t1s. The flow transmission time t
equals the start time of the first packet of the flow, i.e.,

t1s. In this way, we can translate the large collection
of packets into a relatively small collection of flows
F . We then cluster the user IP addresses into different
groups. For simplicity of notation, we only consider
IPv4 addresses. If xi = (xi1, x

i
2, x

i
3, x

i
4) ∈ {0, . . . , 255}4

and xj = (xj1, x
j
2, x

j
3, x

j
4) ∈ {0, . . . , 255}4 are two

IPv4 addresses, the distance between them is defined
as d(xi,xj) = |xi1 − xj1|2563 + |xi2 − xj2|2562 +
|xi3 − xj3|256 + |xi4 − xj4|. This metric can be easily
extended to IPv6 addresses. 1 Suppose X is the set of
unique IP addresses in F . We apply typical K-means
clustering on X with the distance metric defined above.
For each x ∈ X , we thus obtain a cluster label k(x).
Suppose the cluster center for cluster k is x̄k; then,
the distance of x to the corresponding cluster center
is da(x) = d(x, x̄k(x)). The cluster label k(x) and
distance to cluster center da(x) are used to identify a
user IP address x, leading to our final representation of
a flow as:

f = (k(x), da(x), b, dt, t). (6)

2) Quantization: For each f i, the cluster label k(xi)
is discrete and suppose the number of user clusters is K.
We quantize da(xi), bi, and dit to discrete values. After
quantization, each tuple (k(x), da(x), b, dt) corresponds
to a symbol (tuple of discrete values) in a composite
alphabet Σ. We will denote by gi the symbol corre-
sponding to flow f i. For every (discretized) flow gi, we
will refer to the elements in gi corresponding to k(xi),
da(xi), bi, and dit as features 1, 2, 3, and 4, respectively.

3) Window Aggregation: In our methods, flows in
some reference set F are further aggregated into win-
dows based on their flow transmission times. A window
is a detection unit that consists of flows in a continuous
time range that are to be processed together. Let h be
the interval between the start points of two consecutive
time windows and ws be an appropriate window size.
Flow f i belongs to window j if its transmission time ti

satisfies t1 + (j − 1)h ≤ ti < t1 + (j − 1)h + ws. Fj
will denote the collection of flows in a window j and
we will use Gj to denote the discretized version of Fj .

B. Estimating PLs from reference traffic

The purpose now is to estimate families of model-free
and model-based PLs {pFθ : θ ∈ Ω} and {PB

θ : θ ∈ Ω},
respectively, from a discretized collection of flows Gref
with flow transmission times t =

{
t1, . . . , tn

}
. We will

partition Gref into segments and denote by M(j) the
indices of all flows in segment j. Depending on the time-
varying traffic pattern, the partitioning of Gref will be
done in a way such that flows in each M(j) can be

1Other distance metrics can also be used for clustering, including
ones that take into account the geographical location of IP addresses.
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Fig. 2. The relationship between flow transmission time t and indices
of flowsM(j) governed by PL j for shifting networks (A) and periodic
networks (B).

assumed to be generated from the same PL. Thus, each
set of flowsM(j) can be seen as a window from which
a model-free or model-based empirical measure can be
derived using either (2) or (4); this empirical measure is
the PL derived from M(j). Motivated by two represen-
tative types of time-varying networks, we consider two
approaches of partitioning Gref into segments.

1) Shifting networks: The first type of networks we
consider will be called shifting networks, loosely speak-
ing these are networks where properties of normal traffic
slowly “shift” with respect to time. This suggests that the
flows close in time are more likely to be governed by
the same PL. We divide Gref into segments, each with
a duration of a prescribed value td. The flows in each
segment are used to estimate a single PL (Fig. 2A). The
flow indices in segment j are

M(j) = {i : t1 + (j − 1)td ≤ ti < t1 + jtd}, (7)

where j = 1, . . . ,
⌊
(tn − t1)/td

⌋
. td characterizes how

quickly we expect the statistical properties of the traffic
to shift. Larger td indicates a slower shifting of traffic
properties in the network. One can choose a variety of
td’s, and for each td generate the corresponding M(j)
and the resulting PLs.

2) Periodic networks: The second approach is mo-
tivated by periodic networks where properties of the
normal traffic change periodically. In these networks,
two flows can be governed by the same PL either if
their transmission times are close or if the difference of
their transmission times equals the period (Fig. 2B). Let
td characterize shifts within the period and let tp be the
period. For j = 1, . . . , btp/tdc, let

M(j) = ∪
k∈Kj

{
i : ktp + (j − 1)td ≤ ti < ktp + jtd

}
,

(8)
where

Kj =
{
k : ktp + (j − 1)td > t1 and ktp + jtd < tn

}
.

Again, we can choose a variety of tp’s and td’s with
each combination resulting into btp/tdc PLs.

Practical networks can exhibit both types of non-
stationary behavior described above. Moreover, the peri-
odicity and the degree of shift may change over time, too.

Shifting Periodicity

Region 1

Interval

Fr
eq

ue
nc

y td

t p /2

Region 2

Fig. 3. Histogram of intervals between two consecutive flows with a
specific feature quantized to the same discrete value.

To increase the robustness of the PL estimation to these
non-stationarities, we first propose a large collection of
candidates and then refine it using integer programming.

C. Generating a large collection of PLs
To generate a collection of PLs – one for each segment
M(j) – we need to estimate td and tp described in the
previous section. We have a reference sequence of quan-
tized flows Gref =

{
g1, . . . ,gn

}
and the corresponding

flow transmission times t =
{
t1, . . . , tn

}
. Recall that

features of flows are quantized into discrete values. For
each feature a, we let the collection of all corresponding
discrete values be Σa = {σa1 , . . . , σa|Σa|}. For all a, b, we
say a flow gi belongs to channel a–b if its ath feature gia
equals σab . We first analyze each channel separately to
get a rough estimate of td and tp. Then, channels of the
same feature are aggregated to get a combined estimate.

1) Estimation in one channel: Let Iab ={
ti : gia = σab

}
be the sorted sequence of flow

transmission times for flows in channel a–b. The
interval between two consecutive flows in channel a–b
is τkab = tkab − t

k−1
ab , k = 2, . . . , |Iab|, where tkab is the

kth element in Iab.
For shifting networks, since the majority of flows in

each channel belong to a continuous time range, the
intervals between two consecutive flows are small. The
histogram of the intervals {τkab : k = 2, . . . , |Iab|} will
have a heavy head that contains most of the mass within
a certain time close to zero (Region 1 in Fig. 3). The
end of the time interval containing most of the mass can
be used as an upper bound on the interval between two
consecutive flows and is a good option for td.

For periodic networks, the histogram for intervals in
{τkab : k = 2, . . . , |Iab|} is also heavily skewed to small
intervals, thus, td can be estimated in the same way as
with shifting networks. However, the intervals between
two consecutive flows can be large. Fig. 4 shows an
example of a feature that exhibits periodicity. There will
be two peaks around tp1 and tp2 in the histogram of inter-
vals for flows whose values are between the two dashed
lines. We can select tp such that (tp1 + tp2) /2 ≈ tp/2.
In practice, there can be multiple peaks because of the
randomness in the network, and we can choose their
mean as an approximation of tp/2 (cf. Fig. 3).
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2) Aggregation for channels of the same feature:
Denote the estimate of td and tp based on channel a–b
as tabd and tabp , respectively. We use the subscript {d, p}
to unify the notations for both estimates. tabp = 0 if no
periodicity is found in channel a–b. For a = 1, 2, 3, 4, let
T a{d,p} = {tab{d,p} : b = 1, . . . , |Σa|, and tab{d,p} > 0} be
the collection of estimates for all channels of feature a.
We define the combined estimate of td and tp for feature
a as ta{d,p} = MEAN(T a{d,p}), where MEAN(·) calculates
the sample mean of a set.

If T ap is empty, the network is non-periodic according
to feature a, thus, a family of candidate PLs can be
generated using tad and (7). Otherwise, the network is
periodic according to feature a, and a family of candidate
PLs can be generated using tad, tap, and (8). In addition,
in case that some prior knowledge of td and tp is
available, the family of candidate PLs can include the
PLs calculated based on this prior knowledge.

D. PL refinement with integer programming

From Sec. III-C, we now have a large family of
candidates for PLs. The larger this family is, the more
likely it is to overfit Gref . Furthermore, a smaller family
of PLs is desirable since it reduces the computational
cost of anomaly detection. This section introduces a
method to refine the family of candidate PLs.

For simplicity, we will only describe the procedure
for the model-free method. The procedure for the model-
based method is similar. To make the exposition concise,
when referring to the divergence between the empirical
measure of a set of flows and a PL, we will simply say
the divergence between the set of flows and the PL.

Suppose the family (namely the set) of candidate
PLs is P = {pF1 , . . . ,pFN} of cardinality N . Because
no alarm should be reported for Gref , or segments of
Gref , our primary objective is to choose the smallest
set PF ⊆ P such that there is no alarm for Gref .
We aggregate Gref into M windows as outlined in
Sec. III-A and denote the data in window i as Giref .

Let Dij = DF (EG
i
ref

F ‖ pFj ) be the divergence between
flows in window i and PL j for i = 1, . . . ,M and
j = 1, . . . , N . We say window i is covered (namely,
reported as normal) by PL j if Dij < λ. Here, λ is the
same threshold we used in Def. 2. With this definition,

the primary objective becomes to select the minimum
number of PLs to cover all the windows.

There may be more than one subsets of P having the
same cardinality and covering all windows. We propose
a secondary objective characterizing the variation of
a set of PLs. Let Nj = {i : Dij < λ} be the
index set of windows covered by PL j and denote by
N

(1)
j , . . . , N

(|Nj |)
j the ordered elements of Nj . Define

Dj = {N (i)
j − N

(i−1)
j : i = 2, . . . , |Nj |} the set of

differences between consecutive window indices covered
by PL j. The coefficient of variation for PL j is defined
as cjv = STD(Dj)/MEAN(Dj), where STD(Dj) and
MEAN(Dj) are the sample standard deviation and mean
of set Dj , respectively. A smaller coefficient of variation
means that the PL is more “regular.” The secondary
objective is to minimize the sum of coefficients of
variation for selected PLs. We formulate PL selection
as a weighted set cover problem in which the weight
of PL j is 1 + γcjv , where γ is a small weight for the
secondary objective. Let xi be the 0–1 variable indicating
whether PL i is selected and let x = (x1, . . . , xN ). Let
A = {aij} be an M ×N matrix whose (i, j)th element
aij is set to 1 if Dij < λ and to 0 otherwise. Let
cv = (c1v, . . . , c

N
v ). Selecting a set PF (⊆ P) of PLs

can be formulated as an integer programming problem:

min 1
′
x + γc

′

vx
s.t. Ax ≥ 1,

xj ∈ {0, 1}, j = 1, . . . , N,
(9)

where 1 is a vector of ones. The objective is a weighted
sum of the primary cost and the secondary cost. The
first constraint enforces there is no alarm for Gref .

function HEURISTICREFINEPL(A, cv , r, γth)
Init: bestCost := ∞, γ := 1, x∗ := 0
while γ ≥ γth do

x := GREEDYSOLVE(A, γ, cv), γ := rγ
if 1

′
x + γthc

′

vx < bestCost then
bestCost := 1

′
x + γthc

′

vx
x∗ := x

end if
end while
return x∗

end function
function GREEDYSETCOVER(A, γ, cv)

Init: x0 := 0, C := ∅
while |C| < M do

j+ := arg maxj:x[j]=0

P
i/∈C aij

1+γcv[j]

x[j+] := 1, C := C ∪ {i : aij+ = 1}
end while
return x

end function
Algorithm 1: Heuristic algorithm for PL refinement.
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Because (9) is NP-hard, we propose a heuristic
algorithm to solve it (see the display Algorithm 1).
HEURISTICREFINEPL is the main procedure whose pa-
rameters are A, cv , a discount ratio r < 1, and a termi-
nation threshold γth. In each iteration, the algorithm de-
creases γ by a ratio r and calls the GREEDYSETCOVER
procedure to solve (9). The algorithm terminates when
γ < γth. In the initial iterations, the weight γ for the
secondary cost is large so that the algorithm explores
solutions which select PLs with less variation. Later, the
weight γ decreases to ensure that the primary objective
plays the main role. Parameters γth and r determine
the algorithm’s degree of exploration, which helps avoid
local minima. In practice, we can choose small γth and
large r if we have enough computation power.

GREEDYSETCOVER uses the ratio of the number of
uncovered windows a PL can cover and the cost 1+γcv
as heuristics. GREEDYSETCOVER will add the PL with
the maximum heuristic value to PF until all windows
are covered by the PLs in PF . Suppose the return value
of HEURISTICREFINEPL is x∗. Then, the refined family
of PLs is PF =

{
pFj : x∗j > 0, j = 1, . . . , N

}
.

Once we have a family of PLs, then anomaly detection
for either the model-free or the model-based case can
be done by using either the test of Definition 2 or
Definition 3 and comparing the family of PLs against
the empirical measure of windows of current activity
(see also Fig. 1). Thus, the proposed method processes
windows of current activity one after the other and
indicates which windows are found anomalous.

IV. SIMULATION RESULTS

Lacking data with annotated anomalies is a common
problem for validation of anomaly detection methods. To
that end, we developed an open source software package
SADIT [17] to provide flow-level datasets with annotated
anomalies. Based on the fs-simulator [18], SADIT simu-
lates normal and abnormal flows in networks efficiently.

Our simulated network consists of an internal (to
an organization) network and several Internet nodes
(Fig. 5). The internal network consists of 8 normal
nodes CT1-CT8 and 1 server (SRV) containing some
sensitive information. There are also three Internet nodes
INT1-INT3 that access the internal network through a
gateway (GATEWAY). For all links, the link capacity
is 10 Mb/s and the delay is 0.01 s. All internal and
Internet nodes communicate with the SRV and there is no
communication between other nodes. The normal flows
from all nodes to SRV have the same characteristics.

We consider two representative types of changing
patterns for normal traffic: shifting pattern, a com-
mon pattern for traffic to “booming” web services,
and day-night pattern, a common pattern for traffic to
services with geographically concentrated users (e.g.,

central node

Fig. 5. Simulation setting.

www.boston.com). For the shifting pattern, we as-
sume the size of the normal flows follows a Gaus-
sian distribution N(m(t), σ2). For the day-night pat-
tern, we consider both the case when the flow size
follows a Gaussian distribution N(m(t), σ2) and the case
when the flow size follows a log-normal distribution
lnN(m(t), σ). For all cases, the arrival process of flows
is assumed to be a Poisson process with arrival rate
η(t). Both m(t) and η(t) change with time t. For both
patterns, we monitor the traffic on the server and evaluate
the performance of the robust model-free and model-
based methods for an anomaly associated with attacks
in which some hackers exfiltrate sensitive information
through SQL injection [19].

A. Shifting pattern

When a web service is booming, users tend to generate
and download more content from its servers. From the
flow perspective, this means that the average flow size is
shifting to higher values. As a simple model, we assume
the flow size of all users follows a Gaussian distribution
N(m(t), σ2) truncated to be positive, where m(t) is a
linear function of time as m(t) = at + b and η(t) is a
constant. a and b are two parameters that characterize
the shift of the traffic. In our simulation, we set b = 4
Mb, a = 3.6 Kb/h, and σ2 = 0.01 for all users. The
flow arrival rate is constant and η(t) = 0.1 fps (flows
per second). Using this shifting pattern, we generate
reference traffic Gref for one week (168 hours).

For window aggregation, both the window size ws
and the interval h between two consecutive windows is
2000 s. The number of user clusters is K = 2. For the
quantization, the number of quantization levels for the
distance to cluster center, the flow size, and the flow
duration (features 2, 3, 4) are 2, 2, and 8, respectively.

We apply the procedures described in Secs. III-B and
III-C to Gref to identify a set of candidate PLs. Based on
flow size, the traffic is non-periodic and the combined
estimate of td is 3.89 h. Our PL generation approach
leads to 43 candidate model-free and model-based PLs,
each PL being calculated using a segment of Gref .

The results of PL refinement for the model-free case
with a shifting pattern are plotted in Fig. 6. Subfigure A
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Fig. 6. Results of PL refinement for model-free PLs in a network
with shifting pattern.
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Fig. 7. Results of PL refinement for model-based PLs in a
network with shifting pattern.

plots the divergence between the reference traffic and all
candidate PLs, Subfigure B plots the divergence between
the reference traffic and the selected PLs, and Subfigure
C depicts the “active PL,” whose definition will be
presented later, at each window. The x-axis shows the
start time of each window. Results for other cases will be
plotted in the same format. For the model-free method,
because m(t) shifts with time, the PL calculated based
on the flows in a certain window has small divergence
with near-by windows, but the divergence becomes larger
for windows further away (cf. Fig. 6A). There are 4
PLs selected by the PL refinement procedure when the
detection threshold is set to λ = 2 (Fig. 6B). We say PL
j∗ is active during window i if its divergence with traffic
in this window is the smallest among all selected PLs,
namely j∗ = arg minj Dij . Each selected PL is active
for a continuous range of time, which is consistent with
the fact that the traffic pattern is shifting (Fig. 6C). The
active PL oscillates between the former active and a new
PL before it switches to the new PL.

For the model-based method, 6 PLs are selected by
the PL refinement procedure when λ = 2 (Fig. 7A,B).
Each PL is active for a continuous range of time with
similar oscillations as in the model-free method during
the transition between two active PLs (Fig. 7C).

B. Day-night pattern

The traffic of local web services usually exhibits
diurnal variations because people browse websites more
frequently during the day than during the night. Fig. 8
shows the normalized average traffic to American social
websites over a day [20].

1) Flow Size with Truncated Gaussian Distribution:
For this case study, we assume the flow size of all users
follows a Gaussian distribution N(m(t), σ2) truncated to
be positive, and the flows arrive according to a Poisson
process with rate η(t). Let p(t) be the function shown in

Fig. 8, and assume η(t) = Λp(t) and m(t) = Mpp(t),
where Λ and Mp are the peak arrival rate and the peak
mean flow size. In our simulation, we set Mp = 4 Mb,
σ2 = 0.01, and Λ = 0.1 fps for all users. Using this
day-night pattern, we generate a reference traffic trace
Gref for one week (168 hours) whose start time is 5 pm.
Again, an estimation procedure is applied to estimate
td and tp. The parameters for window aggregation and
quantization are the same as in Sec. IV-A.

We apply the procedures described in Secs. III-B and
III-C to Gref to identify a set of candidate PLs. The
combined estimate of the period based on flow size
is 24.56 h, which is only 2.3% away from the real
value of 24 h. For the model-free method, there are
64 candidate model-free PLs proposed in the estimation
stage. The model-free divergence between each window
and each candidate PL is a periodic function of time,
too. Some PLs have smaller divergence during the day
while others have smaller divergence during the night (cf.
Fig. 9A). However, no PL has small divergence for all
windows. 3 PLs out of the 64 candidates are selected
when the detection threshold is λ = 0.6 (cf. Fig. 9B).
The 3 selected PLs are active during day, night, and the
transition time between day and night, respectively (cf.
Fig. 9C for the active PLs of all windows).

For the model-based method, there are 64 candidate
model-based PLs, too. Similar to the model-free method,
the model-based divergence between all candidate PLs
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Fig. 8. Traffic pattern of social network websites.
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and flows in each window in Gref is periodic (Fig. 10A)
and there is no PL that can represent all the reference
data Gref . 2 PLs are selected when λ = 0.4 (Fig. 10B).
One PL is active during the transition time and the other
is active during the stationary time, which consists of
both day and night (Fig. 10C).

2) Flow Size with Log-normal Distribution: Many
flows correspond to file transfers and [21] argues that the
sizes of transferred files in the Internet follows a mixed
model in which the body of the file size distribution can
be modeled by a log-normal distribution. In this section,
we assume the flow size (in bytes) follows a log-normal
distribution lnN(m(t), σ), where m(t) = Mpp(t) is
a time-varying parameter. Again p(t) is the pattern
function depicted in Fig. 8. We let Mp = 7.881 (in
bytes) and σ = 1.339, both of which are estimated from
real network traffic [21]. We assume that flows arrive
according to a Poisson process with rate 0.1 fps.

For the model-free method, there are 32 candidate
model-free PLs proposed in the estimation stage and
only 3 PLs are selected when λ = 0.1 (Fig. 11). One
PL represents the “high activity” pattern between 10 pm
and 1 am, one PL represents the “low activity” pattern
between 2 am and 11 am, and one PL represents the
“moderate activity” pattern for the remaining time.

For the model-based method, there are also 32 candi-
date model-based PLs and only 3 PLs are selected when
λ = 0.1 (Fig. 12). The meaning of the three selected
PLs for the model-based methods is similar to their
counterparts for the model-free methods.

The results show that the PL refinement procedure is
effective and the refined family of PLs is meaningful.
Each PL in the refined family corresponds to a “pattern
of normal behavior.” This information is useful not only
for anomaly detection but also for understanding the
normal traffic in time-varying networks.

C. Comparison with vanilla stochastic methods

For both types of normal patterns in Secs. IV-A and
IV-B, we compared the performance of our robust model-
free and model-based method with their vanilla coun-
terparts in detecting anomalies ([5, 22]). In the vanilla
methods, all reference traffic Gref is used to estimate a
single PL. We used all methods to monitor the server
SRV for one week (168 hours) under the two network
traffic patterns.

We considered an anomaly in which node CT2 in-
creases the mean flow size by 30% at 59 h and the
increase lasts for 80 minutes before the mean returns
to its normal value. This type of anomaly could be
associated with a situation when attackers try to exfiltrate
sensitive information (e.g., user accounts and passwords)
through SQL injection [19].

For all methods, the window size is ws = 2000 s and
the interval h = 2000 s. The quantization parameters
are equal to those in the procedure for analyzing the
reference traffic Gref . The simulation results show that
the robust model-free and model-based methods perform
better than their vanilla counterparts for both types of
normal traffic patterns (Fig. 13).

For the case when normal traffic exhibits a shifting
pattern, the detection threshold λ equals 2.0 for all
methods. The vanilla model-free method misses the
anomaly when the normal traffic shows a shifting pat-
tern (Fig. 13A). Even worse, it generates false alarms
for the first 30 hours. In contrast, the robust mode-
free method detects the anomaly successfully without
false alarms (Fig. 13B). False alarms also appear in
the detection results of the vanilla model-based method,
though it detects the anomaly successfully (Fig. 13C).
Again, the robust model-based method reports no false
alarm (Fig. 13D).

Compared with the shifting pattern, the day-night
pattern has more influence on the results from the
vanilla methods. The second row of Fig. 13 shows
the results for the case when the flow size follows a
Gaussian distribution. For both the vanilla and the robust
model-free methods, the detection threshold λ equals 0.6.
The vanilla model-free method reports all night traffic
(between 3 am to 11 am) as anomalies (Fig. 13E).
The reason is that the night traffic is lighter than the
day traffic, so the PL calculated using all of Gref is
dominated by the day pattern, whereas the night pattern
is underrepresented. In contrast, because both the day
and the night patterns are represented in the refined
family of PLs (Fig. 9B), the robust model-free method
is not influenced by the fluctuation of normal traffic and
successfully detects the anomaly (Fig. 13F).

The day-night pattern has similar effects on the model-
based methods. When the detection threshold λ equals
0.4, the anomaly is barely detectable using the vanilla
model-based method (Fig. 13G). Similar to the vanilla
model-free method, the divergence is higher during the
transition time between day and night because the tran-
sition pattern is underrepresented in the PL calculated
using all of Gref . Again, the robust model-based method
is superior because both the transition pattern and the
stationary pattern are well represented in the refined
family of PLs (Fig. 13H).

The third row of Fig. 13 shows the results for the
case when the flow size follows a log-normal distribution
and the normal traffic has a day-night pattern. For all
methods we use detection threshold λ = 0.1. The
anomaly can not be observed in both the vanilla model-
free method and the vanilla model-based method due
to the high variance of the normal traffic (Fig. 13I and
Fig. 13K). Again, vanilla methods report a lot of false
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Fig. 9. Results of PL refinement for the model-free method in
a network with day-night pattern where the flow size follows a
Gaussian distribution.
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Fig. 10. Results of PL refinement for the model-based method
in a network with day-night pattern where the flow size follows
a Gaussian distribution.
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Fig. 11. Results of PL refinement for the model-free method in
a network with day-night pattern where the flow size follows a
log-normal distribution.
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Fig. 12. Results of PL refinement for the model-based method
in a network with day-night pattern where the flow size follows
a log-normal distribution.

alarms, most of which come from “moderate activity”
and “low activity” patterns which are underrepresented.
In contrast, the robust methods can successfully detect
the anomaly (Fig. 13J and Fig. 13L).

In return for more computations, the robust methods
can significantly reduce false alarms. A traffic segment
will not cause an alarm as long as it can be explained
by any one of the PLs. One limitation is that if an
attacker emulates the day pattern during the night, our
methods will not detect it. However, this may be hard
to accomplish as the attacker will need to understand
aggregate traffic statistics only seen at the server.

An alternative way is to associate a PL with a par-
ticular time-of-day and evaluate traffic using that PL
during those times (e.g., a “day” PL and a “night” PL).
However, this approach also has some limitations. First,
it is not general enough because the times in our training
data do not have a clear corresponding relationship with
the times of the data that need to be evaluated, as for
example in the shifting case. Second, identifying which

PL to use is not only challenging but also error-prone,
and such errors are likely to be the bottleneck of overall
performance. In contrast, the approach we presented is
much more robust to noise and is likely to have better
performance in practice.

V. CONCLUSIONS

The statistical properties of normal traffic are time-
varying for most actual communication networks. To
address limitations of earlier methods that relied on
stationarity, we propose a robust model-free and a ro-
bust model-based method, which can generate a more
complete representation of the normal traffic and are
robust to the non-stationarity in networks. Although in
this paper we focus on host-based anomaly detection, our
methods can be generalized to other applications, such
as monitoring road traffic and monitoring data collected
in manufacturing plants.
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Fig. 13. Comparison of vanilla and robust methods. The first row corresponds to the case of shifting pattern, the second row corresponds to
the case of day-night pattern with Gaussian flow size, and the third row corresponds to the case of day-night pattern with log-normal flow size.
The first and second columns show the results of the vanilla and robust model-free methods, respectively. The third and fourth columns show
the results of the vanilla and robust model-based methods, respectively. The green dashed lines indicate the detection thresholds.

APPENDIX A
PROOF OF THEOREM II.1

Proof: Denote by Ln , {ν | ν = EG for some G}
the set of all possible model-free empirical measures,
i.e., types (Def. 2.1.1 of [8]) of sequences with length
n. The type class of a model-free empirical measure ν
is Tn(ν) = {Y ∈ Σn | EYF = ν}, where Σn denotes
the Cartesian product of Σ with itself n times. Note
that a type class consists of all permutations of a given
observation sequence Y in this set. Suppose P(ν|pFθ ) is
the probability for empirical measure ν under some PL
pFθ (H0 is correct). According to Lemma 2.1.9 in [8],

(n+ 1)−|Σ|e−nDF (ν‖pFθ ) ≤ P(ν|pFθ ) ≤ e−nDF (ν‖pFθ ).
(10)

For all θ ∈ Ω, the false alarm rate of the model-free
generalized Hoeffding test is

αS
*
F (θ) = Pθ|H0

[
G ∈ S*

F

]
=

∑
{ν|Tn(ν)⊆S∗F}

P(ν|pFθ )

≤
∑

{ν|Tn(ν)⊆S∗F}
e−nDF (ν‖pFθ )

≤ (n+ 1)|Σ|e−nλ.

The first inequality comes from (10). For the second
inequality, we use the definition of S∗F and the fact that
|Ln| ≤ (n+1)|Σ| (cf. Lemma 2.1.2 in [8]) . Furthermore,

lim
n→∞

sup
1
n

logαS
*
F (θ)

≤ lim
n→∞

sup
1
n

log((n+ 1)|Σ|e−nλ) = −λ,

which proves that S∗F satisfies (1). Let now S be some
other decision rule satisfying (1). For all ε > 0 and large
enough n, 1

n logαS(θ) ≤ −λ− ε, which is equivalent to

αS(θ) ≤ e−n(λ+ε). (11)

In addition, we have

αS(θ) =
∑

{ν|Tn(ν)⊆S}

P(ν|pFθ )

≥
∑

{ν|Tn(ν)⊆S}

(n+ 1)−|Σ|e−nDF (ν‖pFθ ).

The inequality comes from (10). If n is large
enough, (n + 1)−|Σ| ≥ e−nε. Moreover, (n +
1)−|Σ|e−nDF (ν‖pFθ ) > 0, ∀ ν ∈ Ln, so

αS(θ) ≥ e−n(DF (ν‖pFθ )+ε).

Combined with (11), we obtain e−n(DF (ν‖pFθ )+ε) ≤
e−n(λ+ε), which implies DF

(
ν ‖ pFθ

)
≥ λ for all ν

such that Tn(ν) ⊆ S and θ ∈ Ω. Consequently, S ⊆ S∗F
and βS(θ) ≥ βS

∗
F (θ) for all θ ∈ Ω, so the model-free

generalized Hoeffding test satisfies the GNP criterion.

APPENDIX B
PROOF OF THEOREM II.2

Proof: Let Ln , {Q : Q = EGB , for some G ∈
Σn} be the set of possible model-based empirical mea-
sures, i.e., types of the sample paths of Markov chains
with length n. Note that every component of Q ∈ Ln
belongs to the set { 0

n ,
1
n , . . . ,

n
n}, whose cardinality is

n + 1. Q is specified by at most |Σ|2 such quantities,
which means |Ln| ≤ (n + 1)|Σ|

2
. Suppose P(Q|PB

θ ) is
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the probability for observation Q when under PL PB
θ

(H0 is correct). According to Lemma 3 in [23],

(n+ 1)−|Σ|
2−|Σ|e−nDB(Q‖PBθ ) ≤ P(Q|PB

θ )

≤ e−nDB(Q‖PBθ ). (12)

Similar to the model-free case, define the type class of a
model-based empirical measure Q to be Tn(Q) = {Y ∈
Σn | EYB = Q}. For the false alarm rate of the model-
based generalized Hoeffding test we have

αS
∗
B (θ) = Pθ[G ∈ S*

B ]

=
∑

{Q|Tn(Q)⊆S*
B}

P(Q|PB
θ )

≤
∑

{Q|Tn(Q)⊆S*
B}

e−nDB(Q‖PBθ )

≤ (n+ 1)|Σ|
2
e−nλ,

where the first inequality comes from (12), and the
second one is because |Ln| is bounded by (n + 1)|Σ|

2
.

Then,

lim
n→∞

sup
1
n

logαS
∗
B (θ)

≤ lim
n→∞

sup
1
n

log((n+ 1)|Σ|
2
e−nλ) = −λ.

So the model-based generalized Hoeffding test satisfies
(1). Let now S be some other decision rule which
satisfies (1), for all ε > 0 and large enough n. Then,

αS(θ) ≤ e−n(λ+ε). (13)

Also,

αS(θ) =
∑

{Q|Tn(Q)⊆S}

P(Q|PB
θ )

≥
∑

{Q|Tn(Q)⊆S}

(n+ 1)−(|Σ|2+|Σ|)e−nDB(Q‖PBθ ).

The inequality comes from (12). If n is large enough,
(n+ 1)−(|Σ|2+|Σ|) ≥ e−nε, which implies

αS(θ) ≥ e−n(DB(Q‖PBθ )+ε)

for all Q such that Tn(Q) ∈ S and for θ ∈ Ω. Combin-
ing the above with (13), we obtain e−n(DB(Q‖PBθ )+ε) ≤
e−n(λ+ε), and DB(Q ‖ PB

θ ) ≥ λ for all Q s.t.
Tn(Q) ∈ S and θ ∈ Ω. Consequently, S ⊆ S∗B
and βS(θ) ≥ βS

∗
B (θ), so the model-based generalized

Hoeffding test satisfies the GNP criterion.
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